METHODS

As part of the Children’s Health Study, we measured lung function annually in 2120 children from three separate cohorts corresponding to three separate calendar periods: 1994–1998, 1997–2001, and 2007–2011. Mean ages of the children within each cohort were 11 years at the beginning of the period and 15 years at the end. Linear-regression models were used to examine the relationship between declining pollution levels over time and lung-function development from 11 to 15 years of age, measured as the increases in forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) during that period (referred to as 4-year growth in FEV1 and FVC).

RESULTS

Over the 13 years spanned by the three cohorts, improvements in 4-year growth of both FEV1 and FVC were associated with declining levels of nitrogen dioxide (P<0.001 for FEV1 and FVC) and of particulate matter with an aerodynamic diameter of less than 2.5 μm (P= 0.008 for FEV1 and P<0.001 for FVC) and less than 10 μm (P<0.001 for FEV1 and FVC). These associations persisted after adjustment for several potential confounders. Significant improvements in lung-function development were observed in both boys and girls and in children with asthma and children without asthma. The proportions of children with clinically low FEV1 (defined as <80% of the predicted value) at 15 years of age declined significantly, from 7.9% to 6.3% to 3.6% across the three periods, as the air quality improved (P=0.001).

CONCLUSIONS

We found that long-term improvements in air quality were associated with statistically and clinically significant positive effects on lung-function growth in children. (Funded by the Health Effects Institute and others.)

File Attachment

Create or Update Your Program Profile Today!

Content

Our Newest Program: Kentucky Asthma Management Program

Total Programs in Action: 1101
Total Members in Action: 5144